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Abstract-In this paper, we introduce Nonadditive Information
Theory through the axiomatic formulation of Tsallis entropy.
We show that sysems with transitions from high
dimensionality to few degrees of freedom are better described
by nonadditive formalism. Such a biological system isthe brain
and brain rhythms is its macroscopic dynamic trace. We will
show with simulations that Tsallis entropy is a powerful
information measure, and we present results of brain
dynamics analyzed using EEG recordings from a brain injury
model.
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I. INTRODUCTION

Nonadditi vity, or nonextensivity, is an important concept
in the fidd of information theory. A system is nonextensive
if it contains long-range interaction, long-range memory, or
(multhfractal structure [1],[2],[3]. In such a system, a
macroscopic dynamic quantity is not simply proportional to
the microscopic degrees of freedom but there ae moments
where the system unpredictably looses its high
dimensionality (described by stochastic procesg and falls to
a low dimensiona determinigtic system (either linea or
not). Classcd paradigmsin brain dynamicsistherise of an
epil eptic arisis or the burst suppresson EEG following the
resuscitation from cardiac arest or asphyxia[13],[14]. In
this resped, a nonextensive generaization of Boltzmann-
Gibbs datisticd mechanics formulated by Tsalis [4] is
better suited to describe such phenomena.

I1. NONADDITIVE INFORMATION THEORY

In the development of the foundations of classcal
information theory, Khinchin [5] presented a mathematicall y
rigorous proof of a uniqueness theorem for the Shannon
entropy based on the additivity law for a composite system
in terms of the oncept of conditional entropy. Suppose the
total system can be divided into two subsystems, A and B,
and let pj(AB) be the normalized joint probability of
finding A and B in their ith and jth states, respedively. Then
the mnditional probability of B given A found in itsith state

is given by p; (B|A) = p; (A,B)/ p;(A), which leads
to the ceebrated Bayes multipli cation law
Pi (AB)=p (A Pi (B|A) , )

where  pi(A) is the marginad probability distribution:
p(A = Z_ P; (A B). It should be noted that this form of

factorization can always be etablished in any physica
situation. The Shannon entropy of the cmmposite system is

S(A, B) = -k, Z p, (AB)In p, (A, B)*". @)

Combining (1) and (2) yidds
S(AB) =S(A)+S(BA), ©)
where S( B|A) stands for the @nditiona entropy [6].

In the particular case when A and B are datigtically
independent, p;(B|A)=p;(B) and from (1) and (2) is drawn
out the additivity law S(A, B) =5A) +9B). We anphasize
here that there is a natural correspondence relation between
the multiplication law and the additivity law:

p(AB=p(Ap;(BA=SABD=SA+SBA, &

When the above discusson is generalized to any composite
system there ae theoreticd and experimental considerations
where systems do not obey to the additivity law [7]. In this
resped, a nonextensive generaization of Boltzmann-Gibbs
statisticd medhanics formulated by Tsallis [4] is better
suited to describe such phenomena. In this formalism,
referred to as nonextensive statistical mechanics, Shannon
entropy in (2) isgeneraized asfoll ows:

[l [l
S,(A,B) = ﬁgz [pij (A, B)]q —1% (5)

where g is a positive parameter. This quantity converges to
the Shannon entropy in the limit q—1. Like the Shannon
entropy, it is nonnegative, possesses the definite concavity
for al g>0, and is known to satisfy the generalized H-
theorem . Nonextensve statisticd mechanics has found a lot
of physical applications. A standard discusson about the
nonadditivity of the Tsallis entropy S(p) asumes
factorization of the joint probability distribution in (1)
(p; (AB) = p; (A)p; (B)). Then, the Tsallis entropy is

found to yield the so-call ed pseudoadditivity

S,(AB)=S,(A) +§,(B) +(1-0)S,(AS,(B). (6)
Clealy, the additivity holds if and only if g—1. However,
thereisalogicd difficulty in this discusson. As mentioned

! weuse throughout the pgper dimensionlessunitswhere the Boltzmann
congtant, Kg is set equal to 1
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above, Tsallis nonextensivity was devised in order to tred a
system with, for example, long-range interactions. On the
other hand, physically, “dividing the total system into the
subsystems" implies that the subsystems are made spatially
separated in such a way that there is no residual interaction
or corrdation. If the system is governed by a long-range
interaction, the statisticd independence @n never be
redized by any spatial separation since the influence of the
interaction persists a al distances. In fact, the probability
distribution in nonextensive statistical mecdhanics does not
have a factorizable form even if systems A and B are
dynamically independent, and therefore correlation is
alwaysinduced by nonadditivity of statistics[8].

Thus, it is clea that the assumption of the factorized joint
probability distribution is not physically pertinent for
characterizing the nonadditivity of the Tsallis entropy.
These considerations naturaly lead us to the necessty of
defining the onditional entropy associated with the Tsdlis
entropy.

To overcome the above mentioned logical difficulty and
to generalize the @rrespondence relaion in  (4)
simultaneously, Santos [9] proposed a generdization of
Shannon’s theorem to Tsalli s entropy, Hotta et Joichi [10]
investigated composability and generalized (Tsallis) entropy
and Abe [11] extended the work of Santos [9] generalizing
the Khinchin axioms for the ordinary information theory in a
natural way to the nonextensive systems.

Along the lines of recent paper of Abe and Rajagopal
[12] we mnsider the Tsallis entropy of the nditional

probebility distribution p; (AB) = p; (A B)/ p;(A) as

Sq (A B)- Sq (A |
1+(1-a9)S,(A)
From this, weimmediately seethat

S(AB)=5(A+S,(BA+(1-9S(AS,EBA ©
which is a natural nonaddititive generaization of (3) in
view of pseudoadditivity in (6). Therefore the
correspondencereationin (4) bemmes now

Pi (AB)=p, (A P (B|A) it
S(AB=S(A+S,(BA+1-9S,(AS,(BA. ©)

This equation coincides with the (6) of pseudoadditivity
when the two systems A and B are independent.

In this way the nonadditive Tsdlis entropy was
formulated according to the Khinchin axioms of
information theory and the @ntradiction between
dependency (Bayes law) and long range interaction
(nonadditivity) is removed. Summarizing, we have
established on firm mahematicd grounds, a generd
criterion for consistent testing o the independence between
random variables, which we propose as a practical tod to
andyze the EEG reaordings. The results depends upon the
entropic index g. It is expeded that, for every specific use,
better discrimination can be achieved with appropriate
ranges of values q.

s, (B|A) =

()
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Fig. 1. A synthetic sgnal (top) and Shannon and Tsallis entropy for
different g index values(q=1.5,3,5). The synthetic signal is composed by:
(I) one redlization of Gaussan dstribution with zero mean and standard
deviation equals 1, (I1) one realization of uniform distribution in the
interval [-2,2], (I11) EEG recordings from baseline(I1l) and early recovery

(IV). For g=3 the Tsallis entropy is sensitive enough to dstinguish between
signals with dfferent probability distribution function and to differentiate
the baseline EEG from early recovery EEG.



III. SIMULATIONS

We eplore the use of parameterized Tsdlis entropy
(function of g) to monitor the changes of EEG undergoesin
different conditions and to compare it with the entropy of
signals with known probability distribution function (PDF).
In particular, we cmmpare the Tsallis and Shannon entropy
measures on asynthetic signal.  The synthetic signal s(k) is
composed o four parts of 2000samples each with different
PDF's. (I) Gausdan dsdtribution with zero mean and
standard deviation o = 1, (II) a uniform distribution in the
interval [-2,2], (II1) an EEG rewrding from basdline, and
(IV) an EEG reording from ealy rewmvery after
ischemic/cardiac arest brain injury [13]. Figure 1, from top
to bottom, shows one realization of signal s(t) and Shannon
and Tsallisentropies (g=1.5, 3 and 5) after 50 runs.

The foll owing points are of importarce:

1) The etropy is maximum for uniform
digtribution. The entropy of basdine EEG lies
between the two extreme distributions, Gausdgan

and uniform, preserving a subgaussan
distribution.

2) Trangtion from one digribution to the next is
properly revealed.

3) Shannon and Tsallis entropy for g=1.5 are more
sensitive than Tsallis entropy for g=3 and 5 for
segmenting the different parts of the signal.

4) Tsallis entropy for g=5 has greder discriminant
power between parts I,11,lll and the part of the
signal from recovery EEG (1V).

IV. CONCLUSIONS

We have mnstructed the nonadditive cnditiona entropy
based on the axiomatic foundations of classcal information
theory and the pseudoadditivity of the Tsallis entropy.
Furthermore we have shown examples where the
nonadditive entropy provides a novel statistical description
of the brain rhythms during asphyxic injury and recovery.
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